航天
航空
核工业
船舶
兵器
军事电子
综合
可靠性
仪器仪表
自动化
电子元器件
电容器、LC滤波器 电阻器、电位器 PCB电路板 真空电子器件 连接器 二极管、晶体管半导体 集成电路和微电子组件 LED系列产品 光电器件 光学材料与光电元器件 继电器 电感元件 集成电路和微电子组件 频率控制和频率选择元件 电子设备用机电元件 电子材料 广播电视制作、播出、发射和传输设备 其它
传感器
光纤传感器 光电传感器 压力传感器 热学量传感器 物位测量系列 声学量传感器 流量传感器 湿度传感器 气体传感器 电学量传感器 速度传感器 力传感器 位置传感器 位移传感器 光学量传感器 加速度传感器 尺度传感器 磁学量传感器 其它传感器
电工器材
电线、电缆 开关电线 插头、插座 电动机 绝缘材料 低压电器 高压电器 防雷及电涌保护器 室内外照明设备 便携式照明设备 灯泡、灯座、整流器 其他
电源
EPS消防应急电源 UPS不间断电源 稳压电源 变频电源 净化电源 特种电源 发电机组 开关电源(AC/DC) 逆变电源(DC/AC) 模块电源(DC/DC) 电池 其它电源产品
通用机械
轴承 密封件 紧固件、连接件 弹簧 泵及真空设备 阀门 齿轮、蜗杆、链传动件 减速箱 气动元件 液压元件 过滤件 工业皮带 清洗、清理设备 制冷设备 电热设备 涂装设备 仓储设备 干燥设备 混合设备 其它未分类
行业设备
机床 机床配附件 塑料机械 包装设备 电焊、切割设备 印刷设备 环保设备 焊接材料与附件 电子产品制造设备 化工设备 铸造及热处理设备 冶炼设备 橡胶机械 玻璃加工设备 试验机 储运设备 过滤设备 空气净化装置 检测设备 安全、防护、消防设备 其它
当前位置:技术 » 航空技术 » 正文

飞行器座舱RCS可视化计算方法研究

点击图片查看原图
  • 发布日期:2012-10-28 17:40
  • 有效期至:长期有效
  • 技术区域:广东湛江市
  • 浏览次数350
  • 留言咨询
 
详细说明

飞行器座舱RCS可视化计算方法研究

根据分层媒质理论[1]和图形电磁学理论[2],得到并验证了一种新的分析和计算座舱RCS的方法.低RCS座舱罩表面的散射场利用图形电磁学计算方法(GRECO)求解,其中边缘效应利用增量长度ILDC方法估算;舱内结构散射分析,应用分层媒质理论得到介质舱罩反射系数和传输系数,同时采用能量分布调制和随机相位加权的方法计算舱内结构散射;在本文的最后给出了数据分析结果.
  关键词:分层媒质理论;图形电磁计算(GRECO);C-R几何样条;随机相位加权;能量分布调制

The Radar Cross Section of Aircraft Cabin Visualization Calculative Method

JIANG Xin,NIU Bao-qiang,WANG Bao-fa
(Department of Electronic Engineerng,Beijing University of Aeronautics & Astronautics,Beijing 100083,China)

  Abstract:Based on the layered-media wave theory and Graphical Electromagnetics Theory,a method of analyzing and calculating the Radar Cross Section (RCS) of aircraft cockpit targets is presented and verified.The cabinsur face scattering fields are obtained by using Graphical Electromagnetic Computation (GRECO),including cabin wedge scattering fields computed by ILDC method.The reflectance coefficient and the transmittance coefficient are obtained by using the layered-media wave theory.Then amplitude and phase weighing method,called Energy Modulation and Random Phase Weighting method,are used for calculating the structural scattering fields caused by the objects in the cabin.Numerical results for aircraft cabins are provided at the end of this paper.
  Key words:layered-media system;graphical electromagnetic computing (GRECO);C-R geometrical spline;phase-weighting method;energy modulation method

一、引  言
  众所周知,常规飞行器座舱为飞机正前方较强的散射源之一.为减小这部分对总RCS的贡献,常采用带导电镀层复合舱罩及外形隐身措施.本文利用C-R样条函数建立对座舱几何外形描述,进而得到可视化电磁散射模型,利用图形电磁计算方法(GRECO)计算带有隐形金属镀膜座舱罩表面的散射特性.座舱内电磁散射分析十分复杂,本文应用分层媒质理论得到反射系数和传输系数,采用幅度和相位调制的方法,即能量调制和随机相位加权的方法,计算舱内结构散射;其散射总场通过各场依相位迭加得到,在工程上有实际应用价值.

二、目标图像生成和可视化计算
  低RCS座舱罩外形必须兼具气动及电磁散射特性两方面的要求.先进战斗机多采用流线形剖面的水滴状结构.通常没有一个解析形式的数学模型能描述其几何外形构型.为此,从座舱截面型值点数据,以Catmull-Rom[3]曲面进行拟合,本文采用近年来发展起来的C-R几何连续样条函数对目标进行几何建模.
  图1(a)、(b)是利用C-R样条对某外军先进战斗机座舱网栅图插值拟合前后对比,前者有184个顶点,354个面;后者2764个顶点,5514个面.

t12-1.gif (1443 bytes)

图1 (a)座舱插值拟合前网栅图 (b)座舱插值拟合后网栅图

  通过C-R样条曲面对目标模型的拟合,实现了复杂目标由型值点构成的多边形粗糙模型到光滑真实模型的过滤,在对目标进行几何描述以后,即可应用图形软件标准接口(OpenGL)[4]和图形加速卡硬件对目标进行显示和消隐,从而在微机上实现GRECO的电磁计算.以下是用图像生成程序显示的座舱模型图2(a),(b)前者是没插值前的图形,后者是用C-R样条拟合后的图形.

t12-2.gif (1212 bytes)

图2 (a)拟合前座舱模型  (b)拟合后座舱模型

其详细计算实现方法请看参考文献[5].

三、舱内结构散射分析
  当雷达信号进入座舱,经多次反射后又传出座舱,其传播方向无法预料,其强度也很难估计.这里,将用以下方法解决该问题.首先应用分层媒质理论[1]求解舱罩的反射系数和透射系数.
  1.分层媒质的反射和透射系数[1]
  令垂直于Z轴的多层媒质的层数为L,加之其外部边界,共有L+2种媒质.分层媒质界面垂直于Z轴,则在入射媒质与分层媒质中的电磁场可表示为:

g13-1.gif (1582 bytes) (1)

式中ts17-1.gif (108 bytes)为沿轴的单位矢量,[Mm]的具体表示式为

g13-2.gif (1120 bytes) (2)

式中

g13-3.gif (867 bytes)
δm=(2πNm/λ)dmcosθm
Nm=εmμm-j(4πσmμm/ω) (3)

其中λ为入射平面波波长,ω为角频率,ε、μ和σ分别为媒质的介电常数、导磁率和导电率,为简便起见,定义分层结构的导纳Y为

g13-4.gif (508 bytes) (4)

故方程(1)可表示为

g13-5.gif (971 bytes) (5)
g13-6.gif (1848 bytes) (6)

式中[B C]T定义为分层结构的特征矩阵,且

Y=C/B (7)

  实际上,分层媒质的反射系数、传输系数和吸收系数可表示为

g13-7.gif (1031 bytes) (8)
g13-8.gif (826 bytes) (9)
g13-9.gif (783 bytes) (10)

  2.能量分布调制法[6]
  鉴于雷达波穿过舱罩进入舱内,由舱内散射体散射到舱外空间过程中,至少两次穿透舱罩结构,利用分层媒质散射矩阵和能量、相位加权,考虑到舱内射线物理过程产生的随机性,在舱内后向散射的RCS求解中引入了随机因素.利用随机因数生成程序+应用程序,从而获得良好的统计结果.
  假设透过舱罩进入座舱的能量为ε,由于舱内人体、头盔、座椅以及仪表框架等物体的散射,该能量被随机地在方位角(φ0,φ0)和俯仰角(θu,θd)范围内散布.相当于以某一能量分布函数F(θ,φ)对均匀扩散情况下的平均能量进行调制加权,使能量分布与实际情况更逼近.F(θ,φ)可视不同机种的情况,通过分析和测试予以确定.在此种情况下,舱内电磁能量密度的分布可表示为:

ts13.gif (88 bytes)(θ,φ)=εF(θ,φ)/∫θdθu∫θ0-θ0R2sinθdφdθ
=εF(θ,φ)/[2R2φ0(cosθu-cosθd)] (11)

因此,在某方向(θ,φ)上由ts13.gif (88 bytes)引起的RCS值为:

σ(θ,φ)=lim[4πR2ts13.gif (88 bytes)(θ,φ)/|Ei|2]
=2πεF(θ,φ)/[φ0(cosθu-cosθd)] (12)

考虑到雷达波经过舱罩进入舱内,由舱内物体散射回舱外空间的过程中,两次穿透舱罩结构,势必产生能量损耗,于是

ts13.gif (88 bytes)(θ,φ)=εF(θ,φ).β/[2R2φ0(cosθu-cosθd)]
σ(θ,φ)=2πεF(θ,φ).β/[φ0(cosθu-cosθd)]  (13)

式中β为衰减因子g13-10.gif (313 bytes),且β正比于舱罩透射系数的平方.式中F(θ,φ)必须满足

∫θdθu∫φd-φ0F(θ,φ)sinθdθdφ=2φ0(cosθu-cosθd) (14)

由于

∫θdθu∫φd-φ0ts13.gif (88 bytes)(θ,φ)R2sinθdθdφ=ε

g13-11.gif (1362 bytes)

σ(θ,φ)=4πεβF0(θ,φ)/∫∫F0(θ,φ)sinθdθdφ (15)

  式(15)中F0(θ,φ)的选取应根据统计结果确定.例如,对均匀分布而言F0(θ,φ)=1,而对高斯分布和对数分布情况下,分别为FG0(θ,φ)和FL0(θ,φ):

g13-12.gif (1875 bytes)

式中ξ和α为分布参数.在确定F0(θ,φ)之后,式(15)可用来解舱内散射对某给定方向的RCS值σ(θ,φ).舱内结构散射以及舱外金属面部分构成总的面效应场Esf,棱边部分则构成总的边缘散射场Esw.

四、座舱总散射场
  舱内结构散射以及舱外金属面部分构成总的面效应场Esf,棱边部分则构成总的边缘散射场Esw.其RCS值为

g13-13.gif (1402 bytes) (16)

五、数值结果分析
  对于带有镀层厚度在40~80Å的有机玻璃(其厚度为10mm,相对介电常数和导电率各为εr=2.62,μr=1),薄膜的导电率取为5×106(1/Ω.m),则在垂直入射时电磁反射率与镀层厚度的关系如图3和图4所示.

t14-1.gif (4793 bytes)

图3 反射率与镀层厚度的关系(重直极化)

t14-2.gif (4696 bytes)

图4 反射率与镀层厚度的关系(水平极化)

  图5(a)为、10.5GHz、VV极化带导电镀层(100Å)、座舱姿态角为(φ,0,0)时的飞机座舱的理论计算曲线,相应的实验曲线图5(b).

t14-3.gif (9892 bytes)

图5 目标:座舱模型,频率:10.5GHz,极化:VV,带导电镀层

  图6(a)为10.5GHz、HH极化、带导电镀层(100Å)、座舱姿态角为(φ,0,0)时的飞机座舱理论计算曲线,相应的实验曲线图(b)

t14-4.gif (9609 bytes)

图6 目标:座舱模型,频率:10.5GHz,极化:HH,带导电镀层

  从实验和计算结果可以看出,采用镀膜结构的座舱RCS平均值为-15dBSM,两者平均值一致,总的趋势一致,证明了该算法的有效性.另外采用镀膜结构的座舱透入舱的能量较小,再返回舱外的散射能量更小,远小于无镀膜的座舱.利用以上计算方法可给出不同飞行状态,极化,和工作频率的RCS值,它可作为航空飞行器CAD/CAM系统中的一个基本模块,与其它CAD模块一起,进行优化处理,为飞行器设计提供依据.

 
0条 [查看全部]  相关评论

公司信息







该企业最新技术
在线客服

18682042306

© 2008-2023 运营商: 湛江市东龙网络科技有限公司 国防科技网 www.81tech.com 广东通信管理局备案:粤ICP备2023038372号-2
全国公安机关 备案信息 可信网站不良举报 文明转播